高承压含水层煤矿突水风险评估方法

    Risk assessment method of water inrush in coal mine with high confined aquifer

    • 摘要: 本研究针对高承压含水层煤矿突水灾害评估中存在的多源异构数据融合困难等问题,提出了一种基于深度学习的风险评估方法。该方法设计了特征提取-时序分析-风险评估的网络架构,通过注意力机制实现对地质构造特征的高效提取,利用LSTM网络捕捉水文地质参数的时序演化特征,通过全连接层进行风险等级划分。实验结果表明,该方法风险预测准确率达到93.2%,满足实时预警需求。

       

      Abstract: This study proposes a deep learning-based risk assessment method to address challenges in data fusion from multiple heterogeneous sources when evaluating water inrush hazards in coal mines with high-pressure aquifers. The method implements a network architecture of feature extraction-temporal analysis-risk assessment. It employs attention mechanisms for efficient extraction of geological structure features, utilizes LSTM networks to capture temporal evolution patterns of hydrogeological parameters, and applies fully connected layers for risk level classification. Experimental results demonstrate a risk prediction accuracy of 93.2%, meeting real-time early warning requirements.

       

    /

    返回文章
    返回